
Structure Search and Stability Enhancement of Bayesian Networks

Hanchuan Peng and Chris Ding

Computational Research Division, Lawrence Berkeley National Laboratory,

University of California, Berkeley, CA, 94720, USA

Email: hpeng@lbl.gov, chqding@lbl.gov

Abstract

Learning Bayesian network structure from large-scale data

sets, without any expert-specified ordering of variables, remains
a difficult problem. We propose systematic improvements to

automatically learn Bayesian network structure from data. (1)
We propose a linear parent search method to generate candidate

graph. (2) We propose a comprehensive approach to eliminate

cycles using minimal likelihood loss, a short cycle first heuristic,
and a cut-edge repairing. (3) We propose structure perturbation

to assess the stability of the network and a stability-improvement

method to refine the network structure. The algorithms are easy
to implement and efficient for large networks. Experimental re-

sults on two data sets show that our new approach outperforms

existing methods.

1. Introduction

The rapidly increasing quantity of data in many data mining

fields allows a great opportunity to model and understand the

relationships among a large number of variables. Bayesian Net-

works (BNs) [13][6][8][1] provide a consistent framework to

model the probabilistic dependencies among variables, e.g. in

medical image mining [15]. A BN [6][8] is a Directed Acyclic

Graph (DAG) G = (V, E) that models the probabilistic dependen-

cies among a group of variables (nodes). The joint distribution

can be factorized into the product of conditional probabilities of

every variable given its parents: P({g}) = g VP(g| g), where g

stands for a variable, g is the parents of g; the directed edges

among nodes encode the respective conditional distributions.

Directly identifying the BN structures from input data D re-

mains a challenge. The problem is NP-hard [3][6]. Many heuris-

tic search methods have been proposed (for reviews see [8][1]). If

there is a predefined ordering of variables, the well-known K2

algorithm [6] can efficiently determine the structure. For many

applications where there is no sufficient knowledge to provide

such an ordering, the BN-learning methods, e.g. conditional in-

dependence test based method [2], often have at least O(n4) com-

plexity. Other Monte Carlo methods have even larger complex-

ity, e.g. the search method based on random-sampling and model

averaging in the space of ordering [7]. Clearly, an efficient algo-

rithm to identify BN structures, without requiring ordering of

variables, is particularly important. There exist several meth-

ods/software. For example, the WinMine software of Chickering

[4] has the strength to learn large BN structure. Cheng designed

PowerConstructor [[1]] and won data mining contest KDD-

Cup-2001.

We propose a new O(n2) algorithm to infer locally stable

Bayesian networks without requiring predefined ordering of vari-

ables or predefined thresholds to terminate the model search. Our

algorithm consists of three main steps. (1) We develop an effi-

cient algorithm to search optimal parents, which form a candidate

graph (See §2). (2) We propose a new graph-based method to

eliminate possible cycles in the candidate graph that would vio-

late the acyclic assumption of BNs (See §3). (3) We evaluate the

network stability using structural perturbation. The structural

perturbation can detect unstable local structures; an algorithm for

improving the stability is proposed (See §4).

We assume a uniform prior of the structure of G. The poste-

rior (log-likelihood) of G given the data D, (G) = logP(G|D)

logP(D|G), is used to judge the optimality of G. The posterior

can be evaluated using different scores, including the Bayesian

score [6] and its variant [5], MDL [1], BDe [8], etc. In this paper,

we use the Bayesian score, but other scores can be equally well

adopted in our structure identification algorithms.

2. Candidate Graph

The candidate graph Gc is a directed graph containing impor-

tant associations of variables where the redundancy of associa-

tions should be minimized. Our approach is to identify the opti-

mal parent set for each node based on the Bayesian score . Here

our emphasis is on how to efficiently search for optimal parent

set, = {g*
i , i=1,…,m}. The locally optimal parent set is similar

to dependency graph of Heckerman et al [9][11]; the difference is

that they used regression to determine the dependency while we

directly search based on the Bayesian score.

Our algorithm is an extension of K2 algorithm [6]. K2 uses a

simple incremental search strategy: it first searches for the best

singleton parent g*
1, i.e., g*

1 = argmaxi (gi g), and (gi g) >

(g) + (gi). It then searches for further parent(s) to maximize the

score increase in each step, until no better score can be found.

We extend K2 in two directions. (a) We constrain the search

in the most probable space to reduce the computational complex-

ity. Note that once a parent or parents are found, many of the rest

nodes are rendered conditionally independent. Thus in searching

for the second parent g*
2, we do not need to search through all the

rest variables, 1={V \g*
1}; instead we need only search

1
+ = {gi V | gi g*

1, (gi g) > (gi) + (g)}. (1)

Note that 1
+ is obtained automatically when searching for g*

1.

Similarly, when searching for g*
3, we need only search 2

+, in-

stead of 2={V \{g*
1 , g*

2}}; etc. This restriction saves a large frac-

tion of the searched space.

(b) We systematically search a larger space than K2. In K2, g*
1

corresponds to the largest (gi g). Denote the respective parent

set as (1). We can search another set of parents beginning with

the second largest (gi g), denoted as (2). If (2) leads to better

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03)
0-7695-1978-4/03 $ 17.00 © 2003 IEEE

score than (1), then we take (2) as the final parent set. We call

this 2-max search. This can be extended to k-max search. Clearly,

the Bayesian score of (k) increases monotonically with k, at the

expense of linearly enlarged complexity.

We call this modified method the K2+ algorithm. It has the

complexity O(kmn), where counts for the reduction using

1
+, 2

+,…, m
+ instead of 1, 2 ,…, m (often i

+ contains a

much smaller number of variables than i). Accordingly, the

complexity to construct the whole candidate graph is O(n2).

3. Cycle Elimination

Since the candidate graph Gc is generated via local optimal

search, it is possible that Gc contains many cycles that violate the

basic acyclic assumption of BNs.

A simple approach is to enumerate all possible DAGs that

could emerge from Gc and select the one with the largest score.

However, this method is impractical due to its exponential com-

plexity. Approximation methods based on random edge cut [12]

have been studied. A heuristic decision-tree based approach has

also been studied in [11]. In this paper, we resolve this problem

via graph algorithmic approach. Our comprehensive approach

consists of three methods that can be implemented efficiently.

Any cycle must lie in a Strongly Connected Component

(SCC) of the graph. An efficient O(n) algorithm based on depth-

first search can locate SCCs in a directed graph. We first find all

the SCCs in Gc, and eliminate cycles within each SCC.

3.1 Bayesian Likelihood Loss Function

If a SCC contains one cycle, we can break one cycle at a time.

We break cycles based on loss function. For each edge gi gj, we

define the loss as the reduction of Bayesian log-likelihood for gj

due to the loss of one of its parent

w(gi gj) = (gj |) (gj | \ gi). (2)

Note that w(gi gj) w(gi gj). Although mutual information

might be another possible choice as the loss, it does not reflect the

joint association between different parents and gj.

If a SCC contains several cycles, sometimes they share one or

more common edges, such as the cycles in Figure 1. For exam-

ple, in Figure 1(a) the edge g2 g3 is shared by the cycles C1231

(i.e. g1 g2 g3 g1) and C2342.

There are several criteria to break the cycles. (a) We can sim-

ply cut edges with the smallest loss. (b) We can identify the

common edges and cut the one shared by most cycles. In Figure 1

(b), cutting the common edge g2 g3 will eliminate two cycles.

(c) The loss function criterion indicates there could be better

choices. Suppose g1 g2 and g3 g4 are the edges with the mini-

mal loss in cycles C1231 and C2342. If the condition

w(g1 g2) + w(g3 g4) < w(g2 g3) (3)

holds, then we break edges g1 g2 and g3 g4; otherwise, we

break the edge g2 g3.

Figure 1 (b) illustrates a more complicated SCC with four 3-

node cycles C2312, C2342, C2542, C2642. The edge g2 g3 is shared 2

times and the edge g4 g2 is shared 3 times. We start cycle elimi-

nation from the most-shared edge (i.e. g4 g2) and use a minimal-

likelihood-loss strategy similar to Eq.(3). If the edge g4 g2 is cut,

then only C2312 remains and we will further cut its minimal loss

edge; otherwise we use Eq.(3) to decide which edge(s) in cycles

C2312 and C2342should be broken.

This minimal-likelihood-loss criterion is summarized as fol-

lows. If there is no nested cycle, for each cycle we break the edge

with the minimal loss. When several cycles nest among them-

selves, we identify the edge eij shared by most cycles and com-

pare its loss with the sum of the minimal loss edges in participat-

ing cycles; if breaking eij leads to less loss, we cut eij; otherwise

we cut the minimal loss edges in every participating cycle.

(a) (b) (c)

Figure 1. (a) A SCC with two 3-node cycles. (b) A SCC with

four 3-node cycles. (c) A SCC with a 3-node cycle and a 4-node

cycle. Multiplicities of nodes are shown in parentheses.

3.2 Short-Cycle-First Heuristic

Finding the set of cut edges with regarding to the minimal-

likelihood-loss criterion could be complicated due to the exis-

tence of many cycles and the large number of common edges

they share. We propose a short-cycle-first heuristic to minimize

the complexity (for both computation and implementation):

(a) In BNs, information propagates multiplicatively because

of the probability calculation. Along a fixed path of m edges, the

influence of the starting node on the ending node is P1P2 Pm

approximately. Therefore, in general, a long cycle violates the

acyclic assumption less severely than a short cycle. If a SCC con-

tains cycles of different lengths, our short-cycle first heuristic

breaks the 2-node cycle first, and the 3-node cycle second, etc. In

Figure 1 (c), we first break the 3-node cycle C2352. Afterwards, we

break the cycle C12341 if it still exists.

(b) When cycles of different lengths share edges, it is typically

more efficient to break the shorter cycle first. For example, sup-

pose two cycles Ca and Cb (with lengths a and b, respectively)

share one common edge, and the cut-edge-loss-function is homo-

geneous. Approximately there is 1/a chance to break the common

edge in Ca, and 1/b chance to break it in Cb. If a<b, then it is more

likely (i.e. 1/a > 1/b) that first breaking Ca (the shorter one) will

simultaneously break Cb.

3.3 Cycle Identification by Matrix Multiplication

Short-cycle-first heuristic can be efficiently implemented

through a matrix multiplication method. Let A be the adjacency

matrix of a SCC. Diagonal elements of A are zeros. We compute

Am with the smallest m such that nonzero elements appear at ma-

trix diagonal; with some elementary algebra, we can show that

(1) nodes corresponding to nonzero diagonal elements in Am must

involve in m-node cycles; thus finding these cycles are restricted

to the subgraph induced by these nodes; (2) the multiplicity of

node i (i.e. value of (Am)ii) equals the number of times a cycle

pass through node i (for example, in Figure 1 (a) and (b) the mul-

tiplicity of nodes are indicated by red numbers in parentheses).

(3) Starting from the node with the highest multiplicity using

breadth-first-search algorithm, restricting on the subgraph, we can

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03)
0-7695-1978-4/03 $ 17.00 © 2003 IEEE

easily traverse all m-node cycles and identify the most-shared

edges. For example, in Figure 1 (b), we can start from g2 and

quickly identify the most-shared edge e42. We use the likelihood

loss criterion to break cycles. Note that A is usually very sparse

and the sparse matrix multiplications often involve much less

computation than dense matrixes.

After one or more edges are cut, we re-run the SCC-detection

algorithm to identify the new SCCs and the matrix multiplication

method to identify shortest remaining cycles. This is repeated

until all cycles are eliminated.

3.3 Repair of Local Structures

Once an edge gi gj in the candidate graph Gc is cut, there is a

loss of the likelihood of (gj| j) because now gj's parent set j is

less optimal. Hence, we use K2+ parent-search to repair the par-

ent set of each node whose incident edges have been cut. The

repair is done locally, i.e., all other parents of gj are retained dur-

ing the repair of j. In addition, the repair is subject to the acyclic

condition, i.e. the best replacement edge cannot cause cycles.

Suppose in cycle elimination, M edges are cut and the local

structures of the involved nodes need repair. We notice the first-

repaired local structures will give extra-constraints on the space

of the later-repaired local structures due to the acyclic condition

(i.e. potentially the search-space of the later-repaired local struc-

tures would be shrunk). By comparing the candidate graph Gc

and the DAG G returned from cycle elimination, we first locate

the nodes whose local structures need repair. We calculate the

likelihood loss of a node due to the cutting of incident edges. We

sort these loss values from large to small, and repair the nodes

according to this ordering. This maximal-loss-first heuristic is

consistent with the minimal-likelihood-loss criterion. Clearly,

during the course of repair, the DAG after each local repair will

always have a higher likelihood score than the DAG before this

local repair. This repair algorithm has the complexity of O(n),

where is the number of nodes whose parent-sets are repaired.

4. Structure Perturbation and Stability En-

hancement

To assess the quality of the obtained network G, we perform

local structural perturbations to assess its stability. Here we con-

sider the Edge Perturbation ("EP"), i.e., we attempt to eliminate

an edge eij = gi gj to see if the Bayesian likelihood is improved.

A "brute force" perturbation is to simply cut eij. However, after eij

is cut, gj's parent-set is no longer optimal. For this reason, we use

the K2+ algorithm to find the new optimal parents for g2, exclud-

ing the cut edge (but keeping all other parents if any). We calcu-

late e
EP and the percentage of stable edges

)|(

)ˆ|(
log)()ˆ(),(

||
1

GDP

GDP
GGr EP

e
Ee

E

EP , (5)

where is the perturbed structure, (x) = 1 if x 0 and 0 other-

wise. The more negative e
EP, the more "stable" the edge e is.

rEP indicates the local stability of G. A stable G has rEP ~ 1.

By using perturbation, we can identify those unstable edges

whose replacements lead to better likelihood scores. We may

improve the network structure by replacing these unstable edges

with their replacements. The edge-stability-improvement algo-

rithm first sorts the e
EP of all unstable edges. Similar to the re-

pair algorithm in §3.3, it then goes through all unstable edges

following the sorted ordering (starting with the most unstable

edge). For a given unstable edge e, the optimal replacement

found in EP is first tried to see if there is cycle caused. If no, then

the optimal replacement is used; otherwise, the K2+ search algo-

rithm is invoked to search the best replacement (similar to §3.3,

the search is subject to the acyclic condition, and all other parents

of the current node are retained.). By applying the edge-stability-

improvement algorithm, the Bayesian likelihood score of G is

improved while the number of unstable edges is reduced.

Our goal is to detect and repair unstable edges to improve a

single structure. This differs from other edge quality assessments,

e.g. averaging over a large number of structures [14], where the

edge importance is not associated with a particular structure.

5. Experiments

We use two data sets in this paper. The first is the well-known

Alarm data set [6] (37 variables, 10000 samples). The intrinsic

ordering of these variables is not used since our major concern is

how to detect the network structure without the ordering informa-

tion. We use the Alarm data accompanying the PowerConstructor

software [2]. We compare our results with WinMine [4][11] (be-

cause it can generate DAGs without ordering of variables) and

the best/mean results of random-sampling method in the space of

variable ordering [7].

The second data set is a yeast genome [10] (481 real-valued

gene variables, 300 data points). The variables are discretized to

3-states via thresholding at 0.4 (- standard deviation, -

mean). These states correspond to the over-expression, baseline,

and under-expression of genes.

Beside the Bayesian score, we also compute the (normalized)

data likelihood L based on the learned structure and conditional

probabilities. We further compute the cross-validated likelihood

(10-fold CV) LCV, which is a better indicator for generalization.

5.1 Results on Alarm Data Set

The results on the Alarm data set are shown in Table 1. Re-

sults of our algorithms, WinMine, and ordering-space-search, are

shown, together with those of the true Alarm structure and the

null model (i.e. without edges). The k-max search in K2+ clearly

improves the quality-measures , L, LCV and rEP (i.e. the 3-max

search results are better than the 1-max search results). The edge

stability algorithm of §3.3 clearly improves all the , L, LCV, and

rEP. rEP becomes1 afterwards.

Compared to true model results, our best results (i.e. 3-max

with improved stability) are very close. Remember that the order-

ing of variables is assumed unknown, thus it is highly unlikely

that the true structure can be recovered from data. Hence, these

results indicate our network can model the data almost equivalent

to the true model, with a different network structure (57 edges in

our model versus 46 edges in the true model).

We run WinMine using three different values, 0.01 (default

value), 0.002, and 8e-12, to adjust the network to have the same

number of edges as our results or as the true model. The quality

metrics of these structures are not as good as our results.

When variables' ordering is unknown, one may generate many

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03)
0-7695-1978-4/03 $ 17.00 © 2003 IEEE

random orderings, use K2 to learn structures, and select the best

ones [7]. We perform this ordering-space-search for 100 random

trials. Both the mean and best results are listed in Table 1. They

are substantially worse than both our and WinMine's results, indi-

cating it is hard to generate good models from random orderings

of variables, even at great computation expense.

Table 1. Results on the Alarm data set. (, L, LCV are all normalized by

nN; is the WinMine parameter controlling the complexity of network

structure. "ImpStab" means improving stability algorithm in §4.)

Learning (all data)
CV (10-

fold) Method

Parent

Search

Method L r
EP

 |E| LCV

1-max -0.2587 -0.2543 0.9123 57 -0.2554 Our method

(Before ImpStab) 3-max -0.2581 -0.2539 0.9298 56 -0.2550

1-max -0.2566 -0.2522 1.0000 56 -0.2533 Our method

(After ImpStab) 3-max -0.2562 -0.2519 1.0000 57 -0.2530

True Model -0.2555 -0.2517 0.9783 46 -0.2526

 = 0.01

(Default)
-0.2593 -0.2551 1.0000 57 -0.2561

 = 0.002 -0.2593 -0.2551 1.0000 57 -0.2561
WinMine

 = 8e-12 -0.2655 -0.2622 0.9783 46 -0.2630

Best results -0.2633 -0.2578 0.8730 63 -0.2592 Search of Ordering

Space

(100 trials)
Mean results

-0.2701

0.0026

-0.2631

0.0023

0.8765

0.0521

74.0

5.4

-0.2650

0.0023

Null Model -0.5822 -0.5813 --- 0 -0.5815

5.2 Results on Yeast Gene Expression Data Set

Table 2 compares the results on the yeast gene data. In both

our BNs and WinMine's results, there are more than 1600 edges

for the 481 nodes. For learning, Table 2 shows that k-max search

in K2+ improves , L, and rEP. The edge-stability-improvement

algorithm leads to steady improvements in all quality-measures.

We also run WinMine for a variety of parameter . The best

results are obtained by setting to its maximal value, i.e. 1.0.

Table 2 shows that in the best case, WinMine results are worse

than that of 3-max, i.e. smaller , smaller rEP, and less generaliza-

tion strength LCV. It is interesting to see that the training likeli-

hood L of WinMine result is higher than that of 3-max, however

LCV of WinMine is lower than that of 3-max; this implies that the

best network of WinMine might overfit data slightly.

Table 2 also lists the time (on PIII 1G CPU) of each method.

A plus "+" in our results means the time spent for the current step

for edge stability improvement. (Our algorithms were imple-

mented in Matlab and C++, while WinMine was in C++). Our

method uses less than 16 minutes to generate an initial BN, and 1

hour or so to refine the network structure. In contrast, WinMine

takes about 4 hours to generate a network with the similar per-

formance. These timing results show that our methods are much

faster than WinMine, due to our algorithm's O(n2) complexity.

6. Discussions

A characteristic of the networks in our results is that they are

rather sparse, which partially explains the high local stability of

the obtained structures regarding to the perturbations. We use

local structural perturbations to systematically assess the roles of

individual edges in the network. Based on them, one could build

larger subnet-level perturbations using clustering, seed growing,

etc. This could help to detect sub-structures of BNs [16].

Acknowledgements: We thank Edward Herskovits for discussions on

Bayesian learning, David Maxwell Chickering for discussion on using

WinMine, and Dana Pe'er for providing the list of 481 genes. This work

is supported by Department of Energy, Office of Science, under contract

No. DE-AC03-76SF00098.

Table 2. Results on the Yeast gene expression data. b is the number

of iterations in stability enhancement.

Search Method

and Parameters
Learning (All Data) CV (10-fold)

k-max b L r
EP

 |E| T (min) LCV

0 -0.9770 -0.8269 0.6222 1326 9 -0.9420

1 -0.9691 -0.7831 0.8451 1517 +44 -0.9303

2 -0.9662 -0.7687 0.9426 1586 +25 -0.9255

3 -0.9654 -0.7640 0.9863 1611 + 8.7 -0.9242

1-max

4 -0.9651 -0.7627 0.9951 1620 + 1.8 -0.9237

0 -0.9710 -0.8019 0.7077 1433 16 -0.9338

1 -0.9654 -0.7689 0.8901 1583 +40 -0.9250

2 -0.9639 -0.7624 0.9579 1614 +27 -0.9226

3 -0.9635 -0.7612 0.9821 1620 +14 -0.9220

4 -0.9634 -0.7606 0.9889 1624 + 6.2 -0.9218

O
u

r
M

et
h

o
d

3-max

5 -0.9631 -0.7588 0.9957 1634 + 0.09 -0.9212

 L r
EP

 |E| T (min) LCV

0.01 (Default) -1.0218 -0.9918 0.2868 272 57 -1.0063

0.50 -0.9916 -0.9373 0.4944 627 115 -0.9683

0.99 -0.9644 -0.7744 0.9064 1528 229 -0.9239

0.999 -0.9638 -0.7591 0.9468 1616 235 -0.9224 W
in

M
in

e

1.00 -0.9636 -0.7554 0.9494 1641 268 -0.9220

Null Model -1.1079 -1.0918 --- 0 0 -1.0987

References

[1] Buntine, W., "A guide to the literature on learning probabilistic networks

from data," IEEE Trans KDE, 8(2): 195-210, 1996.

[2] Cheng, J., Bell, DA, Liu, W., "Learning belief networks from data: an infor-

mation theory based approach," 6th ACM Int Conf on Information and

Knowledge Management, 1997.

[3] Chickering, D., Geiger, D., and Heckerman, D., "Learning Bayesian Net-

works is NP-Hard," MSR-TR-94-17, Microsoft Research, 1994.

[4] Chickering, D.M., "The WinMine toolkit," MSR-TR-2002-103, Microsoft

Research, 2002.

[5] Cooper, G.F., and Yoo, C., "Causal discovery from a mixture of experimental

and observational data," UAI-1999: 116-125, 1999.

[6] Cooper, G.F., and Herskovits, E., "A Bayesian method for the induction of

probabilistic networks from data," Machine Learning, 9: 309-347, 1992.

[7] Friedman, N., and Koller, D., "Being Bayesian about network structure: a

Bayesian approach to structure discovery in Bayesian networks," Machine

Learning, 2002.

[8] Heckerman, D., "A tutorial on learning with Bayesian networks," in M.I.

Jordan (Ed.) Learning in Graphical Models: 301-354, MIT Press, 2000.

[9] Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., and Kadie, C.

"Dependency networks for inference, collaborative filtering, and data visuali-

zation," J. Machine Learning Research, 1: 49-75, 2000.

[10] Hughe, T.R., et al. "Functional discovery via a compendium of expression

profiles," Cell, 102: 109-126, 2000.

[11] Hulten, G., Chickering, D.M., and Heckerman, D., "Learning Bayesian

networks from dependency networks: a preliminary study," AI & Statistics

2003: 54-61, 2003.

[12] Larranaga, P., Poza, M., Yurramendi, Y., Murga, R.H., and Kuijpers, C.M.,

"Structural learning of Bayesian networks by genetic algorithms: a perform-

ance analysis of control parameters," IEEE Trans. PAMI, 18: 912-926, 1996.

[13] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausi-

ble Inference, San Mateo, CA: Morgan Kaufmann, 1988.

[14] Pe'er, D., Regev, A., Elidan, G., and Friedman, N., "Inferring subnetworks

from perturbed expression profiles," Bioinformatics, 17: 215S-224S, 2001.

[15] Peng, H.C., Herskovits E, and Davatzikos C. "Bayesian clustering methods

for morphological analysis of MR images," IEEE Int'l Symp on Medical Im-

aging: Macro to Nano: 875-878, 2002.

[16] Peng, H.C., and Ding, C., "An efficient algorithm for detecting modular

regulatory networks using Bayesian subnets of co-regulated genes," LBNL

Technical Report 53734, Aug 2003.

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03)
0-7695-1978-4/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

